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We model infection arising as a result of one drug-sensitive bacillus which divides and at each
division may create a resistant mutant with probability β, which for isoniazid resistance is on the
order of 10−8 [1]. In a clinical TB infection there may be up to 1010 bacilli [2], so we expect that
several mutation events will have occurred. We wish to find the distribution of the total number of
mutants, including descendants of early mutation events. This problem is closely related to the Luria-
Delbruck theory [3, 4, 5] and subsequent mathematical models,including [6, 7, 8, 9, 10]; however,
these typically either do not include cell death or assume that mutants divide and die at the same rates
as the sensitive cells [4, 5, 11]. Furthermore we develop an intuitive approach to the distributional
estimate, avoiding the use of generating functions. This approach is particularly useful in the TB
setting, as TB infections are large enough that the population of single mutants is expected to be
considerable so that a focus on the probability of single resistance is less appropriate than in related
work on the emergence of resistance in cancer [12]. We assume that there is a fitness cost associated
with drug resistance, i.e., that the relative fitness of the mutant compared to the sensitive strain is
smaller than 1 (though it may be close to 1 if the fitness cost is low). Combined with the rarity of
mutations, this ensures that mutants will comprise only a very small proportion of the population, so
that the time when sensitive cells reach the detection size is very close to the time that the entire
population reaches that size [13, 14]. Also, drug sensitivity testing would be very unlikely to detect
resistant mutants under these assumptions.

Mean mutant numbers

The net growth of the population of sensitive bacterial cells is given by the difference between their
average rate of division, which we denote λ, and their rate of death µ. Similarly, any resistant mutants
that arise during growth may die out, or may divide; we denote the rates of division and death of
mutants as λ1 and µ1 respectively. Resistance mutations typically result in some “fitness cost” which
reduces mutants’ replicative capacity relative to drug-sensitive bacilli; we therefore define a relative
fitness parameter φ = (λ1 − µ1)/(λ− µ) to be the ratio of the net growth rates of mutant bacilli to
sensitive ones. We denote the mutation probability per cell division as β.

Let K denote the random number of cell divisions until the first mutant, ignoring for now the
possibility of extinction. We have

P (K = k) = (1− β)kβ, k = 1, 2, 3, ... and E(K) =
1

β
.

The former is just the probability that the first k divisions did not have a mutation event and the
(k + 1)th does. Now let Xi denote the number of deaths between cell divisions i − 1 and i. The
probability that the next death occurs before the next division is µ/(µ + λ). This means that
Xi ∼ Geom( λ

λ+µ
) − 1, i.e., P (Xi = k) = λ

λ+µ
( µ
λ+µ

)k for k ≥ 0. This is an approximation, in that
the Xi have truncated geometric distributions, as the possible number of deaths is limited by the
current population size. However, as the population grows large, this will not affect the results that
follow. The number of cell deaths before the first mutation is

∑K
k=1Xk, where the number of terms

is random. The population size at the time of the first mutation is then given by

N1 = K −
K∑
k=1

Xk = K

(
1− 1

K

K∑
k=1

Xk

)
. (1)

Since the Xi are identically distributed, and independent of K, we have

E(N1) = E(K)(1− E(X1)) =
λ− µ
λβ

. (2)
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With parameters reflecting growth from the initial infection to a high-grade infection in approximately
5 months and a daily cell cycle, E(N1) = 6 × 106. The same reasoning applies to the change in
the sensitive population between the times of the kth and and (k + 1)th mutations, for any k. On
average, we expect that the sensitive population grows by an additional E(N1) before the arrival of
the next mutant, so that E(Nk) = kE(N1) is the expected size of the sensitive population at the
arrival time of the kth mutant.

Let Rj(t) represent the size, at time t, of the mutant population descended from the jth mutation
from the sensitive population (the “jth clone” for short). We set Rj(t) = 0 for t < τj, the (random)
time of the jth mutation. The key feature of our approach is to write the total mutant number as a
sum of these independent population sizes.

We have E(Rj(t)|τj) = e(λ1−µ1)(t−τj), so that the expected total mutant number E(M(t)) is

E(M(t)|τ1, τ2, . . .) =
∞∑
j=0

e(λ1−µ1)(t−τj).

Between times τ1 and τk, the sensitive population has grown by a factor of k in expectation. The
mutant strain grows φ times as fast, so we expect the size of the population descended from the
first mutant to have grown by a factor kφ. (More precisely, we need the expectation of the random
variable (Nk/N1)

φ, but are approximating this by (E(Nk)/E(N1))
φ. The approximation is good for

large k. More refined estimates are presented in the next section.) Similarly, between times τj and
τk, the sensitive population has grown by a factor k/j on average, so the mutant arising at τj would
have grown by a factor (k/j)φ. At time τk, the expected value of the total mutant population is thus

E(M(Tk)) =
k∑
j=1

(
k

j

)φ
= kφ

k∑
j=1

1

jφ
. (3)

We expect J , the maximum value k will reach before the sensitive population hits the detection size,
to be large enough that the sum can be approximated by an integral, yielding

E(M(TJ)) ≤ kφ
(

1 +

∫ k−1

0

1

(1 + x)φ
dx

)
=
J − φJφ

1− φ
, φ 6= 1. (4)

As the sensitive population is approaching the detection size, mutations are occurring very frequently,
so that the time between the last mutation and the detection time is small, and we ignore it. We
expect J = Nf/E(N1); substituting from Eq. (2) yields Eq. 1 in the main text.

Distribution of mutant numbers

The fact that β is small means that N1 is very close to a multiple (λ− µ)/λ of a Geom(β) random
variable. More precisely, if we define scaled variables Zk = λβ

λ−µ(Nk − Nk−1), then the Zk are
independent and identically distributed, and Z1 converges to an exponentially distributed random
variable with parameter 1 (denoted Exp(1) as β tends to zero. To see this, we first note that, for
K given by equation (1), βK converges in distribution to an Exp(1) random variable as β tends to
zero. This can be seen by direct calcuation:

P (βK ≥ x) =
∑

n=dx/βe

P (K = n) = (1− β)dx/βe → e−x as β → 0.

Next, we observe that K tends to infinity in probability as β tends to zero, and so 1
K

∑K
j=1Xj tends

to E[X1] = µ/λ. It now follows by Slutsky’s theorem [15] that βK(1 − 1
K

∑K
j=1Xj) converges in

distribution to an Exp(1− µ
λ
) random variable, and hence that

Z1 =
λβ

λ− µ
K
(

1− 1

K

K∑
j=1

Xj

)
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converges in distribution to an Exp(1) random variable.
Since the relevant mutation rates are small compared to the net growth of the sensitive population,

E(N1) is large enough that we can approximate the growth of the sensitive cells as deterministic
from this point onwards: N(t) = N1e

(λ−µ)(t−τ1). Let τk represent the time at which the kth mutation
occurred, and Tk = τk+1 − τk. Let ζk =

∑k
j=1 Zj. Conditional on the sizes Nk, we can use the

approximation of deterministic growth of the sensitive population to write

Tk ≈
1

λ− µ
log

ζk+1

ζk
. (5)

The approximation can again be made precise as a limiting result as β tends to zero.
If we define

Wj(t) = e−(λ1−µ1)tRj(τj + t)

then it can be readily verified that Wj is a non-negative martingale. Hence, it converges to a random
variable of unit mean as t approaches infinity. We are interested in the mutant population at a time
τf when the sensitive population reaches a detection size. This can be expressed as

M(τf ) =
∑

j:τj≤τf

e(λ1−µ1)(τf−τj)Wj(τf − τj)

Using Eq. (5),

M(τf ) =
∑

j:τj≤τf

(
ζ(τf )

ζj

)φ
Wj(τf − τj)

=
∑

j:τj≤τf

(
ζ(τf )

ζj

)φ
Wj

(
1

λ− µ
log

ζ(τf )

ζj

)
,

(6)

where we write ζ(τf ) to denote λβ
λ−µN(τf ), and N(τf ) is the(possibly random) size of the sensitive

population at the detection threshold. Now recall that Z1, Z2... are i.i.d Exp(1) random variables,
and ζj =

∑j
k=1 Zj. Thus, the ζj are the points of a unit rate Poisson process when we measure

time in terms of the (scaled) size of the sensitive population. Consequently, conditional on ζ(τf ),
the number J of mutations up to τf is a Poisson random variable with mean ζ(τf ). Moreover,

conditional on J , the variables
ζj

ζ(τf )
, j = 1, ..., J are distributed like the order statistics of J iid

random variables distributed uniformly on [0, 1]. Intuitively this expresses the fact that mutations are
occurring uniformly with respect to the growth of the sensitive population (at a rate of one mutation
per growth by E(N1)), so a Poisson-distributed number of them will occur over a fixed net growth.
We can then rewrite Eq. (6) as

M(τf ) =
J∑
j=1

U−φj Wj

(
− logUj
λ− µ

)
(7)

where J is a Poisson random variable and Ui are iid random variables, independent of J , uniformly
distributed on [0, 1].

The long tails in mutant numbers arise because of the U−φj term in Eq. (3), which has an x1/φ

tail: P (U−φj > x) = x−1/φ. In particular, when φ > 1
2
, U−φj has infinite variance. Moreover, we can

show the following:

Theorem 1 Let Q = U−φj Wj

(
− logUj
λ−µ

)
, where Wj is defined as above. Then,

c := lim
x→∞

x1/φP (Q > x) =
( λ1
λ1 − µ1

) 1
φ
−1

Γ
(1

φ
+ 1
)
. (8)
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The proof is given at the end of the Supplementary Material.
When J is relatively large, the infinite-variance tail behaviour for φ > 1/2 means that the dis-

tribution of mutant numbers can be approximated by an appropriately scaled α-stable distribution;
this allows the computation of the theoretical quantiles[16] shown in Figure 1B; we have used the
program STABLE of J. P. Nolan:1

qp ≈
q0,1p + bJ

aJ
(9)

where qα,1,0,1p is the p’th quantile of the centred α-stable distribution with exponent α = 1/φ, skew
parameter 1, mean 0 and shape parameter 1. We have[16]

aJ =

(
2Γ(α) sin

(
πα
2

)
πc

)1/α

J−1/α, bJ = nanE

(
U−φj Wj

(
− logUj
λ− µ

))
and c is determined by the limiting tail behaviour as in Eq. (8). For high values of relative fitness,
the exponent α approaches 1, and the convergence to the α-stable distribution in the tails is slow,
requiring very large values of J . Using parameters modelling INH resistance, J ∼ 1700; numerical
evidence suggests that this approximation is good for φ < 0.85 but that after that, the upper quantiles
given by Eq. (9) are underestimates (see blue squares in Figure 1B). Figure S1 illustrates the difference
in the distribution of mutant numbers for φ < 1

2
and φ > 1

2
in our numerical simulations.

Figure S1: Numerically determined mutant density (left) and 1-cumulative distribution function
(right) illustrating the emergence of power-law tails for φ > 1

2
.

Dual mutants

We estimate the chance of dual resistance arising from the population of singly-resistant mutants dur-
ing their growth (and, below, during their decline on treatment). Each time a singly-resistant bacillus
divides there is a probability (denoted β12) of a second resistance mutation arising; if this happens,
the resulting cell could give rise to a population of descendants or it could go extinct. However,
while there are significant numbers (thousands) of singly-resistant bacilli at the time of detection, the
mutation rates to dual resistance remain low; we therefore estimate simply the probability that dual
resistance will arise at all during the growth of the infection.

1The program STABLE is available from J. P. Nolan’s website: academic2.american.edu/∼jpnolan
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The expected number of divisions (ie opportunities for dual resistance to arise) of singly-resistant
cells in the jth clone is given by

Bj =

∫ τJ

τj

λ1e
(λ1−µ1)(t−τj)dt =

λ1
λ1 − µ1

(e(λ1−µ1)(τJ−τj) − 1)

Again conditioning on the sizes Nk of the sensitive population at the time of the kth arrival we find
that the total number of divisions of singly-resistant bacilli is

B =
J∑
j=1

Bj =
λ1

λ1 − µ1

J∑
j=1

((
Nf

Nj

)φ
− 1

)
(10)

and the expected number of births is

E(B) =

(
λ1

λ1 − µ1

)
E(J)

∫ 1

0

(U−φ − 1)du = E(J)

(
λ1

λ1 − µ1

)(
φ

1− φ

)
where E(J) = ζ(τf ) = λβ

λ−µN(τf ). The probability that dual resistance arises is

pdual = 1− (1− β12)E(B) ∼ e−β12E(B) ∼ β12E(B).

This gives Eq. 2 of the main text, and values are illustrated in Figure 2A showing the dependence
on the relative fitness φ, with division and death rates reflecting daily division and net growth to
detection size in 5 months.

So far, this discussion has focused on the probability of dually resistant mutants arising from
one kind of singly-resistant mutants only, but either single resistance mutation may occur first; the
combined probability of seeing dual resistance before treatment is very close to the sum of the
probabilities for each route. These will differ depending on the fitness costs and mutation rates of
the two types of single mutants. For INH and rifampin resistance, if the fitness costs are the same,
and the mutations are independent, the probability of duals emerging before treatment is the same
through either route; Figure 2 shows the sum of the probabilities, thereby allowing dual resistance
to emerge through either singly-resistant type first, under the assumption that fitness costs are the
same.

Now consider the risk of dual resistance emerging during treatment. In any multidrug regimen, we
make the conservative assumption that the sensitive cells essentially cease to divide, and therefore ne-
glect the chance that singly resistant mutants arise and create dual resistance. Rather, we explore the
likelihood that dual resistance arises from the populations of single mutants that are already present
when treatment begins. Suppose that multiple treatment will eventually kill the entire population of
single mutants. During their (stochastic) decline, a death is now more likely than a division, and the
average number of deaths is a factor µT1

λT1
more than the number of divisions. Because we assume

that all cells will ultimately die, the population’s net decline during treatment is simply M0 – the
number that occurred before treatment began. This gives the number of births as B = 1

µT1/λT1−1
M0

where M0 is the number of single mutants present when treatment begins; as above, the fact that
β12 is small means that ptrdual ∼ β12E(B), which gives

ptrdual ∼ β12
1

µT1

λT1
− 1

E(M),

and substituting for the expected value E(M) of the number of singly resistant mutants at the time
of detection yields Eq. 3 of the main text. Figure 2B and C illustrate this result and its dependence
on the relative fitness and on the net rate of decline during treatment. Furthermore, the probability
of dual resistance emerging during treatment is greater when treatment kills bacteria less rapidly
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because this allows for more turnover before the population becomes extinct. For this reason, we
would expect to see rifampin resistance emerge from a population of INH-resistant mutants rather
than the other way around, because of the rapid bactericidal action of INH. [17].

Results for the long-tailed distribution of mutant numbers have been obtained in several studies
on the Luria-Delbruck distribution [12, 4, 18]. Here, our explicit computation of the likelihood of
dual resistance, our elucidation of the dependence on mutation rates and the mechanism through
which the fitness costs are inferred, and our reliance on the uniformly distributed R.V. U as opposed
to generating functions add to this understanding and make clear its application to multiple drug
resistance in tuberculosis infections.

Simulations

We also estimate the distribution of mutant numbers by simulating the growth of the bacterial
population as follows. Let N be the population of sensitive cells with N(0) = 1. While N(t) is
below a threshold value (here 100), we use a monte carlo method to decide N(t + 1): ie choose
N(t) random numbers ak uniformly distributed on [0, 1]. For each k = 1, .., N(t), the k’th cell
grows if ak < λk∆t, dies if λ∆t < ak < λ∆t + µ∆t, and so on, dividing the interval up [0,1]
appropriately. This method is prohibitive as N grows large, but for large N , the net growth will
have a mean of N(λ− µ)∆t; each cell in the large population can be represented as either growing
with probability λ∆t, dying with probability µ∆t or neither. We therefore choose the number of new
divisions and deaths to be Poisson-distributed numbers with the corresponding means, and assign
N(t + 1) = N(t) + Divisions − Deaths . Similarly, we choose Poisson-distributed numbers of new
mutants with the correct means when the mutant numbers exceed the threshold. We continue this
process until the expected value of N is 1011. Then we can the time at which the sensitive population
actually reached the detection size Nf = 1010 in all simulations where the sensitive population did
not become extinct, and collect the mutant numbers at those times. The resulting data are shown
in Figure 1.

Proof of Theorem 1

Recall that Q = U−φj Wj(− logUj
λ−µ ), Uj is uniform on [0, 1], and Wj(t) = e−(λ1−µ1)tRj(t + τj), where

Rj(t+ τj) is the number of descendants alive at time t+ τj of the mutant that arose at time τj. Set
τj = 0 without loss of generality. Note that if define T = − logUj/(λ−µ), then T is an Exp(λ−µ)

random variable, and U−φj = eφ(λ−µ)T = e(λ1−µ1)T , since φ = λ1−µ1
λ−µ is the fitness penalty. Hence

Q = Rj(T ). Here, Rj(T ) is the population size in a branching process with birth rate λ1, death rate
µ1 and initiated by a single individual, at a random time T which is exponentially distributed with
parameter λ − µ. The exact distribution for such a branching process at any fixed time is known,
and we shall use it to compute the tail estimate for Q. Specifically, it has been shown[18] that

pn(t) := P (Rj(t) = n) =
(λ1 − µ1)

2e−(λ1−µ1)t

[λ1 − µ1e−(λ1−µ1)t]2

(λ1 − λ1e−(λ1−µ1)t
λ1 − µ1e−(λ1−µ1)t

)n−1
. (11)

Hence, for positive integers n, we have

P (Q > n|T = t) =
∞∑

m=n+1

pn(t) =
λ1 − µ1

λ1 − µ1e−(λ1−µ1)t

(λ1 − λ1e−(λ1−µ1)t
λ1 − µ1e−(λ1−µ1)t

)n
.

Consequently,

P (Q > n) = E
[ λ1 − µ1

λ1 − µ1e−(λ1−µ1)T

(λ1 − λ1e−(λ1−µ1)T
λ1 − µ1e−(λ1−µ1)T

)n]
= E[g(T )], (12)
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where the expectation is taken with respect to the exponential distribution of T . We shall look at
the asymptotics of the above probability as n tends to infinity.

Fix ε > 0 and define t1 = (1 − ε) logn
λ1−µ1 and t2 = (1 + ε) logn

λ1−µ1 . We now decompose E[g(T )] as

E[g(T )1(T < t1)] + E[g(T )1(t1 ≤ T ≤ t2)] + E[g(T )1(T > t2)]. Now, it is easy to see that the
function g(t) is bounded above by 1 for all t, and so,

E[g(T )1(T > t2)] ≤ P (T > t2) = exp
(
−(1 + ε)

λ− µ
λ1 − µ1

log n
)
.

Recalling that (λ− µ)/(λ1 − µ1) = 1/φ, this implies that

n1/φE[g(T )1(T > t2)] ≤ n−ε/φ, (13)

which tends to zero as n tends to infinity.
It can be verified by differentiating log g(t) that it is an increasing function of t for all n > µ1

λ1−µ1 .
Since we are considering large n asymptotics, we may thus assume that log g, and hence g, are
increasing functions. Therefore,

E[g(T )1(T < t1)] ≤ g(t1) =
λ1 − µ1

λ1 − µ1n−(1−ε)

(λ1 − λ1n−(1−ε)
λ1 − µ1n−(1−ε)

)n
≤

(
1− (λ1 − µ1)n

−(1−ε)

λ1 − µ1n−(1−ε)

)n
≤
(

1− (λ1 − µ1)

λ1

nε

n

)n
.

Hence,

n1/φE[g(T )1(T < t1)] ≤ n1/φ exp
(
−λ1 − µ1

λ1
nε
)
, (14)

which tends to zero as n tends to infinity.
We have thus shown that n1/φE[g(T )1(T < t1)] and n1/φE[g(T )1(T > t2)] both tend to zero

as n tends to infinity. It only remains to consider T ∈ [t1, t2]. We have

E[g(T )1(t1 ≤ T ≤ t2) =

∫ t2

t1

(λ− µ)e−(λ−µ)tg(t)dt,

where g(t) is implicitly defined in (12). Making the change of variables v = (λ1 − µ1)t − log n, we
can rewrite the above integral as

E[g(T )1(t1 ≤ T ≤ t2)] =

∫ ε logn

−ε logn

(λ− µ) exp(−v+logn
φ

)

λ1 − µ1e−(v+logn)

(λ1 − λ1e−(v+logn)

λ1 − µ1e−(v+logn)

)n
dv

= (λ− µ)n−1/φ
∫ ε logn

−ε logn

e−v/φ

λ1 − µ1
n
e−v

(λ1 − λ1
n
e−v

λ1 − µ1
n
e−v

)n
dv.

Rearranging, and taking limits as n tends to infinity, we get

lim
n→∞

n1/φE[g(T )1(t1 ≤ T ≤ t2)] =
λ− µ
λ1

∫ ∞
−∞

e−v/φ exp
(
−λ1 − µ1

λ1
e−v
)
dv.

Now, change variables again, setting x = λ1−µ1
λ1

e−v. We get

lim
n→∞

n1/φE[g(T )1(t1 ≤ T ≤ t2)] =
λ− µ
λ1 − µ1

∫ ∞
0

( λ1x

λ1 − µ1

) 1
φ
−1
e−xdx. (15)

Recall that the Gamma function is defined as Γ(α) =
∫∞
0
xα−1e−xdx for α > 0. We also saw

in (14) and (13) that n1/φE[g(T )1(T < t1)] and n1/φE[g(T )1(T > t2)] tend to zero as n tends to
infinity. Hence, we have from (12) and (15) that

lim
n→∞

n1/φP (Q > n) =
1

φ

( λ1
λ1 − µ1

) 1
φ
−1

Γ
(1

φ

)
=
( λ1
λ1 − µ1

) 1
φ
−1

Γ
(1

φ
+ 1
)
.

This completes the proof of the theorem.
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